extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23xC4).1C4 = C23.19C42 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).1C4 | 128,12 |
(C23xC4).2C4 = C23:C16 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).2C4 | 128,46 |
(C23xC4).3C4 = C23.15M4(2) | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).3C4 | 128,49 |
(C23xC4).4C4 = C23.2M4(2) | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).4C4 | 128,58 |
(C23xC4).5C4 = C2xC23:C8 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).5C4 | 128,188 |
(C23xC4).6C4 = C23.8M4(2) | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).6C4 | 128,191 |
(C23xC4).7C4 = C42.393D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).7C4 | 128,192 |
(C23xC4).8C4 = C25.3C4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 16 | | (C2^3xC4).8C4 | 128,194 |
(C23xC4).9C4 = C2xC22.C42 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).9C4 | 128,473 |
(C23xC4).10C4 = C4xC4.D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).10C4 | 128,487 |
(C23xC4).11C4 = (C22xC4).275D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).11C4 | 128,553 |
(C23xC4).12C4 = C24.C8 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 16 | 4 | (C2^3xC4).12C4 | 128,52 |
(C23xC4).13C4 = C2xC22.M4(2) | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).13C4 | 128,189 |
(C23xC4).14C4 = C42.371D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).14C4 | 128,190 |
(C23xC4).15C4 = (C2xC4):M4(2) | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).15C4 | 128,195 |
(C23xC4).16C4 = C42.42D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).16C4 | 128,196 |
(C23xC4).17C4 = C23:M4(2) | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).17C4 | 128,197 |
(C23xC4).18C4 = C42.43D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).18C4 | 128,198 |
(C23xC4).19C4 = C4.C22wrC2 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).19C4 | 128,516 |
(C23xC4).20C4 = (C23xC4).C4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).20C4 | 128,517 |
(C23xC4).21C4 = C42.96D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).21C4 | 128,532 |
(C23xC4).22C4 = C2xC23.C8 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).22C4 | 128,846 |
(C23xC4).23C4 = C22xC4.10D4 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).23C4 | 128,1618 |
(C23xC4).24C4 = C2xM4(2).8C22 | φ: C4/C1 → C4 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).24C4 | 128,1619 |
(C23xC4).25C4 = C2xC22.7C42 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 128 | | (C2^3xC4).25C4 | 128,459 |
(C23xC4).26C4 = C23.28C42 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).26C4 | 128,460 |
(C23xC4).27C4 = C4xC22:C8 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).27C4 | 128,480 |
(C23xC4).28C4 = C42.378D4 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).28C4 | 128,481 |
(C23xC4).29C4 = C24:3C8 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).29C4 | 128,511 |
(C23xC4).30C4 = C23.32M4(2) | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).30C4 | 128,549 |
(C23xC4).31C4 = C2xC22:C16 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).31C4 | 128,843 |
(C23xC4).32C4 = C22xC8:C4 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 128 | | (C2^3xC4).32C4 | 128,1602 |
(C23xC4).33C4 = C2xC4xM4(2) | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).33C4 | 128,1603 |
(C23xC4).34C4 = C22xC22:C8 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).34C4 | 128,1608 |
(C23xC4).35C4 = C2xC42.6C4 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).35C4 | 128,1650 |
(C23xC4).36C4 = C42.425D4 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).36C4 | 128,529 |
(C23xC4).37C4 = C24.5C8 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).37C4 | 128,844 |
(C23xC4).38C4 = C2xC24.4C4 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).38C4 | 128,1609 |
(C23xC4).39C4 = C22xC4:C8 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 128 | | (C2^3xC4).39C4 | 128,1634 |
(C23xC4).40C4 = C2xC4:M4(2) | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).40C4 | 128,1635 |
(C23xC4).41C4 = C2xC42.12C4 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).41C4 | 128,1649 |
(C23xC4).42C4 = C42.677C23 | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 32 | | (C2^3xC4).42C4 | 128,1652 |
(C23xC4).43C4 = C22xM5(2) | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).43C4 | 128,2137 |
(C23xC4).44C4 = C23xM4(2) | φ: C4/C2 → C2 ⊆ Aut C23xC4 | 64 | | (C2^3xC4).44C4 | 128,2302 |